

TEKNOFEST

AEROSPACE AND TECHNOLOGY FESTIVAL

ARTIFICIAL INTELLIGENCE IN HEALTHCARE

COMPETITION

(Category of Disease Detection for Abdominal area via

Computer Vision)

PROJECT DETAIL REPORT

TEAM NAME:

FİZGET-CODEMEDICAL TEAM

TEAM ID:

419522

I

Table of Contents

1. Project Current Statement Assessment .. 1

1.1. PPR Review .. 1

1.2. Current Model Review ... 1

1.3. Training Software and Environment .. 2

2. Originality .. 3

3. Results and Review .. 6

4. Datasets Used in The Experimental and Training Stages .. 8

5. References .. 10

Tables

Table 1. Training Results ... 7

Table 2. Test Results .. 8

Table 3. Disarranged Datasets .. 8

Table 4. Arranged Datasets .. 9

Table 5. Training and Test Datasets ... 9

Graphs

Graph 1. Training Progress .. 6

Graph 2. Training, True-Predicted classification. .. 7

Graph 3. Testing, True-Predicted class classification. ... 7

Figures

Figure 1. CNN Components. .. 2

Figure 2. FizNet Architecture. .. 3

1

1. Project Current Statement Assessment

1.1. PPR Review

In this stage, the PPR Referee Evaluation was considered. To begin with the strength

points, the literature research was improved and strengthened by including more details in our

work. The teamwork was proceeded effectively in accordance with our project plan stated in

the PPR. This report was prepared by following the “Writing Standards and Rules” specified in

the specification in each step. The weak points were evaluated and discussed in detail by the

team to get rid of the problems and complete the missing parts. In this context, first, the

recommendation in the PPR Referee Evaluation of “The algorithms planned to be used could

be supported by newer architectures. In terms of specificity, a new hybrid algorithm could

be proposed.”, literature research was performed and among various choices a new architecture

was developed for our model to assist the used algorithm. Second, for the criticism “Pulmonary

embolism is not an intra-abdominal tomographic diagnosis”, this mistake was recognized

and understood by the team, and more attention is being paid while doing any literature review.

For the last recommendation, “The method is not given in details. The authors do not

provide any insights on the connection between the problem (Abdomen CT lesion

detection) and their proposed solution. The report does not include the details of the

originality of the proposed method. How and why part of the originality is missing.”, the

used method is now given in more detail, the solution is provided by the team regarding problem

as given in the PDR report, and the new method is proposed for satisfying the originality

requirement. In addition, for the fastest and most efficient results, the programming software

was modified in accordance with the project’s methodology. Lastly, we would like to thank the

referees for their valuable criticism, suggestions, and contributions to our project.

1.2. Current Model Review

The Convolutional Neural Network (CNN) algorithm model is planned to be used in

this project for the capture via training the variables from datasets for abdominal inflammation

detection. Various algorithms, such as Elman Neural Network (ENN), Back Propagation

Artificial Neural Networks (BPANN), and Deep Learning (DL) based models, have provided

solutions with some limitations based on the type and number of datasets. However, a portion

of the territories where CNNs are broadly utilized are image recognition, image classification,

image captioning and object detection. The key chore of the neural network is to make sure it

processes all the layers, and hence detects all the underlying features, automatically. CNN is

designed to function in much the same mechanism as the neurons in the human brain [1]. Also,

CNN detects and analyzes images via numerical operations.

To approach the model, initially, the CNN algorithm used in our model contains

components which typically has three layers: a convolutional layer, pooling layer, and fully

connected layer as shown in Figure 1.

2

Figure 1. CNN Components: The first two layers (convolution and pooling) are responsible

for feature extraction from the images, so both are also collectively referred to as feature

extracting layers, while the last fully connected layer is responsible for classifying the image

per the task at hand, so also called the classification layer.

In the Input Image the CNN layers are programmed to identify simpler patterns as lines and

curves before progressing to more complex patterns as faces and objects. Hence, it is plausible

to claim that using a CNN may provide vision to computers. The convolutional layer receives

an image tensor as an input, applies a specific number of convolutional filters (Kernels) on the

image tensor, adds a bias and applies a non-linear activation function (typically, ReLU) to the

output. The objective of convolutional layers is to extract patterns and information from an

image. The Convolutional filters/kernels at the starting of the network are responsible for

capturing the low-level features such as color, gradient orientation, etc. The convolutional

filters/kernels deeper down the network are responsible for capturing the high-level features

such as edges in the image. The pooling layer is responsible for performing a series of pooling

operations on an image. It receives an image tensor as an input and produces a tensor after

applying the specified pooling operation. This helps in reducing the computational costs and

make the network more generic. In Fully Connected Layer (FCL), neurons in this layer have

full connectivity with all neurons in the preceding and succeeding layer as seen in regular Fully

Connected Neural Network (FCNN). Therefore, it can be computed as usual by a matrix

multiplication followed by a bias effect [2].

1.3. Training Software and Environment

MATLAB Program is planned to be used in our model for the training and test processes in

accordance with the programming experience that the team possess. MATLAB provides

interactive tools that make it easy to perform a variety of machine learning tasks, including

connecting to and importing data. Apps can generate MATLAB code, enabling us to automate

tasks. Oftentimes, data has missing or incorrect values. Functions for finding, removing, and

cleaning data enable us to get our data ready for analysis. In MATLAB, Computer Vision

(Image Processing) and Neural Network Toolbox provide additional algorithms that guide us

through the process of training and testing neural networks [3].

3

2. Originality

Various models such as DiceNet, AlexNet, VGG, Inception, and ResNet was examined

on the architectures used with CNN for computer vision. Instead of using well-known

architectures, a new single model classifier FizNet was developed for the detection of

abdominal diseases (See Figure 2). Our developed model FizNet is based on the architecture of

DiceNet [4]. Furthermore, to get better detection accuracy from the fed datasets, addition and

ordering of CNN layers in DiceNet was performed. This alteration is the main originality of our

model.

Figure 2. FizNet Architecture: FizNet contains the following layers: Image Input Layer, 6

Convolution 2D-Layer, Batch Normalization Layer, 6 Rectified Linear Units (ReLU) Layer,

Addition Layer, Fully Connected Layer, SoftMax Layer, and Image Output Layer

(Classification Layer).

• Image Input Layer: An image input layer inputs 2-D images to a network and applies data

normalization [5]. It can be described as the following:

layer = imageInputLayer(inputSize,Name,Value)

This sets the optional properties using name-value pairs, then it can be easy to specify multiple

name-value pairs and to enclose each property name in single quotes.

• Convolution 2D-Layer: A 2-D convolutional layer applies sliding convolutional filters to

2-D input. The layer convolves the input by moving the filters along the input vertically and

horizontally and computing the dot product of the weights and the input, and then adding a bias

term [6].

layer = convolution2dLayer(filterSize,numFilters)

This creates a 2-D convolutional layer and sets the FilterSize and NumFilters properties.

4

• Batch Normalization Layer: A batch normalization layer normalizes a mini batch of data

across all observations for each channel independently [7]. To speed up training of the

convolutional neural network and reduce the sensitivity to network initialization, use batch

normalization layers between convolutional layers and nonlinearities, such as ReLU layers.

After normalization, the layer scales the input with a learnable scale factor γ and shifts it by a

learnable offset β.

layer = batchNormalizationLayer(Name,Value)

• ReLU Layer: A ReLU layer performs a threshold operation to each element of the

input, where any value less than zero is set to zero [8]. This operation is equivalent to

𝑓(𝑥) = {
𝑥 , 𝑥 ≥ 0
0 , 𝑥 < 0

layer = reluLayer('Name',Name)

This creates a ReLU layer and sets the optional Name property using a name-value pair.

For example, reluLayer('Name','relu1') creates a ReLU layer with the name 'relu1'.

• Addition Layer: An addition layer adds inputs from multiple neural network layers

elementwise.[9]

layer = additionLayer(numInputs,'Name',name)

This creates an addition layer that adds numInputs inputs elementwise. It also sets the Name

property.

• Fully Connected Layer: A fully connected layer multiplies the input by a weight matrix

and then adds a bias vector [10]. After it returns a fully connected layer and specifies the Output

Size property.

layer = fullyConnectedLayer(outputSize,Name,Value)

This sets the optional Parameters and Initialization, Learning Rate and Regularization, and

Name properties using name-value pairs. For example,

• Softmax Layer: A softmax layer applies a softmax function to the input [11].

layer = softmaxLayer('Name',Name)

This creates a softmax layer and sets the optional Name property using a name-value pair. For

example, softmaxLayer('Name','sm1') creates a softmax layer with the name 'sm1'. Enclose the

property name in single quotes.

5

• Classification (Output) Layer: A classification layer computes the cross-entropy loss for

classification and weighted classification tasks with mutually exclusive classes [12]. The layer

infers the number of classes from the output size of the previous layer. For example, to specify

the number of classes K of the network, you can include a fully connected layer with output

size K and a softmax layer before the classification layer.

layer = classificationLayer(Name,Value)

This sets the optional Name, ClassWeights, and Classes properties using one or more name-

value pairs; e.g., classificationLayer('Name','output'). This creates a classification layer with the

name 'output'.

Accordingly, the tools in the used neural layers in FizNet are as the following:

inputSize = [512 512 1];

numClasses = 6;

layers = [

 imageInputLayer(inputSize,'Name','input')

 convolution2dLayer(5,15,'Name','convolution_1')

 batchNormalizationLayer('Name','Normalization_1')

 reluLayer('Name','relu_1')

 convolution2dLayer(1,15,'Name','convolution_2');

 reluLayer('Name','relu_2')

 convolution2dLayer(1,15,'Name','convolution_3');

 reluLayer('Name','relu_3')

 convolution2dLayer(1,15,'Name','convolution_4');

 reluLayer('Name','relu_4')

 convolution2dLayer(1,15,'Name','convolution_5');

 reluLayer('Name','relu_5')

 convolution2dLayer(1,15,'Name','convolution_6');

 reluLayer('Name','relu_6')

 additionLayer(5,'Name','add')

 fullyConnectedLayer(numClasses,'Name','fully_connected')

 softmaxLayer('Name','softmax')

 classificationLayer('Name','Output')];

Since the expected work is to detect diseases in the abdominal area via computer

tomography (CT), a developed architecture is needed to produce better results and detection. In

this context, the DiceNet model was examined and reviewed. The DiceNet model has an

architecture including some layers that construct a linearly ordered architecture in which it

contains DimConv 3x3 convolutional layers. Therefore, based on the DiceNet architecture,

layer additions and enhancements have been made to the new model, FizNet. In addition,

Convolutional layers, ReLU layers, Normalization layers, and Addition layers were inserted

into the algorithm (See Figure 2). This insertion enhanced the algorithm's structure and helped

yield an efficient result.

6

3. Results and Review

After the construction of the FizNet model and its architecture was completed, the

selected datasets were classified: 90% of the datasets are used for training and 10% for testing

(See Table 5). The training and testing progress yield expected results with good accuracy and

other criteria through our model, Graph 1.

Graph 1. Training Progress

Furthermore, for training and testing, the Confusion Matrix (CM) was used to know the

performance of the model classification. It gives a comparison between Actual and Predicted

values. The CM is a N x N matrix, where N is the number of classes or outputs. It indicates a

certain matrix such as True Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN) that are essential in calculating the accuracy and F1-score in our model using

the following formulas [13]:

Accuracy = (TP+TN)/(TP+TN+FP+FN).

F1-score = (2TP)/(2TP+ FP+FN).

In our model, each class in CM indicates the tags of the output diseases in a 6 x 6 matrix

form, as shown in Graph 2 and 3. In the training progress, the class 1 x 1, for instance, shows

that out of 540 images, the model has read and analyzed 523 correctly (TP) and missed only 17

(FP), as shown in Graph 2. Moreover, the 4 x 4 and 5 x 5 classes give a 100% accurate result

with 540 correct readings and analysis (TP). Correspondingly, the testing progress is

demonstrated in the same manner as shown in Graph 3.

7

Graph 2. Training, True-Predicted Matrix

Graph 3. Testing, True-Predicted Matrix

The datasets provided to the model for training resulted in 98.64% accuracy, as shown

in Table 1. The datasets which fed into testing the model provided two results. One, with an

accuracy of 97%, is from trained datasets, and the other is from untrained datasets, with an

accuracy of 83.61%. Since the model expectation is to function with untrained datasets for the

test, the second result (83.61%) was considered, as shown in Table 2.

Table 1. Training Results

Total datasets 3240

True 3196

False 44

F1 score 0.9864

IoU 0.9734

Accuracy 98.64 %

8

Table 2. Testing Results

Total datasets 360

True 301

False 59

F1 score 0.8348

IoU 0.7261

Accuracy 83.61 %

As a result, the applied methods of the original model are compatible with the attained

outcomes. Indeed, some enhancement can be done in the model without changing its structure

for better accuracy in results than the one obtained.

4. Datasets Used in The Experimental and Training Stages

The dataset used in the testing and training stages was received from the Ministry of

Health (TUSEB) via TEKNOFEST, from which the required permission was obtained. The

1050 datasets in DICOM format have certain classifications, as given in the Data.xlsx file. The

received folders contained the labeled datasets defined in the specification with an additional

dataset for training, as presented in Table 3.

Table 3. Disarranged Datasets

The Label Name Given in Excel Class Slices Number

Abdominal aorta anevrizma (Abdominal aorta) 6 1426

Abdominal aorta diseksiyon (Abdominal aorta) 6 0

Abdominal aorta - 77588

Akut apandisit ile uyumlu (Apandiks) 1 53388

Akut divertikülit ile uyumlu (kolon) 5 1076

Akut kolesistit ile uyumlu (Safra kesesi) 2 28683

Akut pankreatit ile uyumlu (Pankreas) 3 25034

Apandiks - 0

Apendikolit Ek 0

Böbrek taşı 4 15308

Böbrek- mesane - 46206

Kalsifiye divertikül Ek 572

Kolon - 64413

Pankreas - 12755

Safra kesesi - 6878

Safra kesesi taşı Ek 4093

Üreter taşı 4 16711

9

Since the datasets are in DICOM format and have 79 GB of memory, compression was

needed. So, the format of the images was converted to PNG for better image handling. Also,

this has reduced the memory of the data to approximately 26 GB. The datasets were reclassified

and reordered by keeping the labeled diseases as donated in the specification. This classification

yields a clearer and more readable output for our program and helps us get fast and accurate

results for our model, as shown in Table 4.

Table 4. Arranged Datasets

The Label Name Given in Excel Class Slices Number

Akut apandisit ile uyumlu (Apandiks) 1 53388

Akut kolesistit ile uyumlu (Safra kesesi) 2 28683

Akut pankreatit ile uyumlu (Pankreas) 3 25034

Böbrek taşı 4 15308

Üreter taşı 4 16711

Akut divertikülit ile uyumlu (kolon) 5 1076

Abdominal aorta anevrizma (Abdominal aorta) 6 1426

Abdominal aorta diseksiyon (Abdominal aorta) 6 0

Abdominal aorta 6 77588

Among the datasets, a random sample of 3600 slices with their label name and class

was chosen for training and testing (Table 5).

Table 5. Training and Test Datasets

The Label Name Given in Excel Class Slices Number

Akut apandisit ile uyumlu (Apandiks) 1 600

Akut kolesistit ile uyumlu (Safra kesesi) 2 600

Akut pankreatit ile uyumlu (Pankreas) 3 600

Böbrek taşı 4 300

Üreter taşı 4 300

Akut divertikülit ile uyumlu (kolon) 5 600

Abdominal aorta anevrizma (Abdominal aorta) 6 300

Abdominal aorta diseksiyon (Abdominal aorta) 6 0

Abdominal aorta 6 300

Total 3600

Trained data = 90% = 3240

Tested data = 10% = 360

10

5. References

[1] Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., . . . Ghayvat, H. (2021,

October 11). CNN Variants for Computer Vision: History, Architecture, Application,

Challenges and Future Scope. electronics, 28.

doi:https://doi.org/10.3390/electronics10202470

[2] Sharma, P. (2022). Basic Introduction to Convolutional Neural Network in Deep Learning.

Analytics Vidhya. Retrieved from https://www.analyticsvidhya.com/blog/2022/03/basic-

introduction-to-convolutional-neural-network-in-deep-learning/#h2_1

[3] MathWorks. (n.d.). Introducing Deep Learning with MATLAB. Retrieved from

https://www.mathworks.com/campaigns/offers/next/deep-learning-ebook.html

(Accessed June 09, 2022).

[4] S. Mehta, H. Hajishirzi and M. Rastegari, "DiCENet: Dimension-Wise Convolutions for

Efficient Networks," in IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 44, no. 5, pp. 2416-2425, 1 May 2022, doi: 10.1109/TPAMI.2020.3041871.

[5] https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.imageinputlayer.

html;jsessionid=59a722f8a79677af613a1f6ed695

(Accessed June 15, 2022).

[6] https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.convolution2d

layer.html

(Accessed June 15, 2022).

[7] https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.batchnormal

izationlayer.html,

(Accessed June 15, 2022).

[8] https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.additionlayer.html

(Accessed June 15, 2022).

[9] https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.relulayer.html,

(Accessed June 15, 2022).

[10] https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.fullyconnectedl

ayer.html, (Accessed June 15, 2022).

[11]https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.softmaxlayer.html

(Accessed June 15, 2022).

[12] https://www.mathworks.com/help/deeplearning/ref/classificationlayer.html,

(Accessed June 15, 2022).

[13] Wikipedia contributors, "Confusion matrix," Wikipedia, The Free Encyclopedia,

https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1088688630

(Accessed June 21, 2022).

https://www.mathworks.com/campaigns/offers/next/deep-learning-ebook.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.imageinputlayer.%20html;jsessionid=59a722f8a79677af613a1f6ed695
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.imageinputlayer.%20html;jsessionid=59a722f8a79677af613a1f6ed695
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.convolution2d%20layer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.convolution2d%20layer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.batchnormal%20izationlayer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.batchnormal%20izationlayer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.additionlayer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.relulayer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.fullyconnectedl%20ayer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.fullyconnectedl%20ayer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.softmaxlayer.html
https://www.mathworks.com/help/deeplearning/ref/classificationlayer.html
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1088688630

