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1. Project Current Statement Assessment 

1.1. PPR Review 

In this stage, the PPR Referee Evaluation was considered. To begin with the strength 

points, the literature research was improved and strengthened by including more details in our 

work. The teamwork was proceeded effectively in accordance with our project plan stated in 

the PPR. This report was prepared by following the “Writing Standards and Rules” specified in 

the specification in each step. The weak points were evaluated and discussed in detail by the 

team to get rid of the problems and complete the missing parts. In this context, first, the 

recommendation in the PPR Referee Evaluation of “The algorithms planned to be used could 

be supported by newer architectures. In terms of specificity, a new hybrid algorithm could 

be proposed.”, literature research was performed and among various choices a new architecture 

was developed for our model to assist the used algorithm. Second, for the criticism “Pulmonary 

embolism is not an intra-abdominal tomographic diagnosis”, this mistake was recognized 

and understood by the team, and more attention is being paid while doing  any literature review. 

For the last recommendation, “The method is not given in details. The authors do not 

provide any insights on the connection between the problem (Abdomen CT lesion 

detection) and their proposed solution. The report does not include the details of the 

originality of the proposed method. How and why part of the originality is missing.”, the 

used method is now given in more detail, the solution is provided by the team regarding problem 

as given in the PDR report, and the new method is proposed for satisfying the originality 

requirement. In addition, for the fastest and most efficient results, the programming software 

was modified in accordance with the project’s methodology. Lastly, we would like to thank the 

referees for their valuable criticism, suggestions, and contributions to our project. 

1.2. Current Model Review 

The Convolutional Neural Network (CNN) algorithm model is planned to be used in 

this project for the capture via training the variables from datasets for abdominal inflammation 

detection. Various algorithms, such as Elman Neural Network (ENN), Back Propagation 

Artificial Neural Networks (BPANN), and Deep Learning (DL) based models, have provided 

solutions with some limitations based on the type and number of datasets. However, a portion 

of the territories where CNNs are broadly utilized are image recognition, image classification, 

image captioning and object detection. The key chore of the neural network is to make sure it 

processes all the layers, and hence detects all the underlying features, automatically. CNN is 

designed to function in much the same mechanism as the neurons in the human brain [1]. Also, 

CNN detects and analyzes images via numerical operations.  

To approach the model, initially, the CNN algorithm used in our model contains 

components which typically has three layers: a convolutional layer, pooling layer, and fully 

connected layer as shown in Figure 1. 
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Figure 1. CNN Components: The first two layers (convolution and pooling) are responsible 

for feature extraction from the images, so both are also collectively referred to as feature 

extracting layers, while the last fully connected layer is responsible for classifying the image 

per the task at hand, so also called the classification layer. 

 

In the Input Image the CNN layers are programmed to identify simpler patterns as lines and 

curves before progressing to more complex patterns as faces and objects. Hence, it is plausible 

to claim that using a CNN may provide vision to computers. The convolutional layer receives 

an image tensor as an input, applies a specific number of convolutional filters (Kernels) on the 

image tensor, adds a bias and applies a non-linear activation function (typically, ReLU) to the 

output. The objective of convolutional layers is to extract patterns and information from an 

image. The Convolutional filters/kernels at the starting of the network are responsible for 

capturing the low-level features such as color, gradient orientation, etc. The convolutional 

filters/kernels deeper down the network are responsible for capturing the high-level features 

such as edges in the image. The pooling layer is responsible for performing a series of pooling 

operations on an image. It receives an image tensor as an input and produces a tensor after 

applying the specified pooling operation. This helps in reducing the computational costs and 

make the network more generic. In Fully Connected Layer (FCL), neurons in this layer have 

full connectivity with all neurons in the preceding and succeeding layer as seen in regular Fully 

Connected Neural Network (FCNN). Therefore, it can be computed as usual by a matrix 

multiplication followed by a bias effect [2].  

1.3. Training Software and Environment  

MATLAB Program is planned to be used in our model for the training and test processes in 

accordance with the programming experience that the team possess. MATLAB provides 

interactive tools that make it easy to perform a variety of machine learning tasks, including 

connecting to and importing data. Apps can generate MATLAB code, enabling us to automate 

tasks. Oftentimes, data has missing or incorrect values. Functions for finding, removing, and 

cleaning data enable us to get our data ready for analysis. In MATLAB, Computer Vision 

(Image Processing) and Neural Network Toolbox provide additional algorithms that guide us 

through the process of training and testing neural networks [3]. 
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2. Originality 

Various models such as DiceNet, AlexNet, VGG, Inception, and  ResNet was examined 

on the architectures used with CNN for computer vision. Instead of using well-known 

architectures, a new single model classifier FizNet was developed for the detection of 

abdominal diseases (See Figure 2). Our developed model FizNet is based on the architecture of 

DiceNet [4]. Furthermore, to get better detection accuracy from the fed datasets, addition and 

ordering of CNN layers in DiceNet was performed. This alteration is the main originality of our 

model.  

 

 

Figure 2. FizNet Architecture: FizNet contains the following layers: Image Input Layer, 6 

Convolution 2D-Layer, Batch Normalization Layer, 6 Rectified Linear Units (ReLU) Layer, 

Addition Layer, Fully Connected Layer, SoftMax Layer, and Image Output Layer 

(Classification Layer). 

 

• Image Input Layer: An image input layer inputs 2-D images to a network and applies data 

normalization [5]. It can be described as the following: 

 

layer = imageInputLayer(inputSize,Name,Value) 

 

This sets the optional properties using name-value pairs, then it can be easy to specify multiple 

name-value pairs and to enclose each property name in single quotes. 

 

• Convolution 2D-Layer: A 2-D convolutional layer applies sliding convolutional filters to  

2-D input. The layer convolves the input by moving the filters along the input vertically and 

horizontally and computing the dot product of the weights and the input, and then adding a bias 

term [6]. 

 

layer = convolution2dLayer(filterSize,numFilters)  

 

This creates a 2-D convolutional layer and sets the FilterSize and NumFilters properties. 
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• Batch Normalization Layer: A batch normalization layer normalizes a mini batch of data 

across all observations for each channel independently [7]. To speed up training of the 

convolutional neural network and reduce the sensitivity to network initialization, use batch 

normalization layers between convolutional layers and nonlinearities, such as ReLU layers. 

After normalization, the layer scales the input with a learnable scale factor γ and shifts it by a 

learnable offset β. 

 

layer = batchNormalizationLayer(Name,Value) 

 

• ReLU Layer: A ReLU layer performs a threshold operation to each element of the  

input, where any value less than zero is set to zero [8]. This operation is equivalent to 

 

𝑓(𝑥) = {
𝑥 ,          𝑥 ≥ 0
0 ,         𝑥 < 0  

 

 

layer = reluLayer('Name',Name)  

 

This creates a ReLU layer and sets the optional Name property using a name-value pair.  

For example, reluLayer('Name','relu1') creates a ReLU layer with the name 'relu1'. 

 

• Addition Layer: An addition layer adds inputs from multiple neural network layers 

elementwise.[9] 

 

layer = additionLayer(numInputs,'Name',name)  

 

This creates an addition layer that adds numInputs inputs elementwise. It also sets the Name 

property. 

 

• Fully Connected Layer: A fully connected layer multiplies the input by a weight matrix  

and then adds a bias vector [10]. After it returns a fully connected layer and specifies the Output 

Size property. 

 

layer = fullyConnectedLayer(outputSize,Name,Value) 

 

This sets the optional Parameters and Initialization, Learning Rate and Regularization, and 

Name properties using name-value pairs. For example,  

 

• Softmax Layer: A softmax layer applies a softmax function to the input [11]. 

 

layer = softmaxLayer('Name',Name) 

  

This creates a softmax layer and sets the optional Name property using a name-value pair. For 

example, softmaxLayer('Name','sm1') creates a softmax layer with the name 'sm1'. Enclose the 

property name in single quotes. 
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• Classification (Output) Layer: A classification layer computes the cross-entropy loss for  

classification and weighted classification tasks with mutually exclusive classes [12]. The layer 

infers the number of classes from the output size of the previous layer. For example, to specify 

the number of classes K of the network, you can include a fully connected layer with output 

size K and a softmax layer before the classification layer. 

 

layer = classificationLayer(Name,Value)  

 

This sets the optional Name, ClassWeights, and Classes properties using one or more name-

value pairs; e.g., classificationLayer('Name','output'). This creates a classification layer with the 

name 'output'. 

 

Accordingly, the tools in the used neural layers in FizNet are as the following: 

 

inputSize = [512 512 1]; 

numClasses = 6; 

layers = [ 

    imageInputLayer(inputSize,'Name','input') 

    convolution2dLayer(5,15,'Name','convolution_1') 

    batchNormalizationLayer('Name','Normalization_1') 

    reluLayer('Name','relu_1') 

     

       convolution2dLayer(1,15,'Name','convolution_2'); 

    reluLayer('Name','relu_2') 

           convolution2dLayer(1,15,'Name','convolution_3'); 

    reluLayer('Name','relu_3') 

       convolution2dLayer(1,15,'Name','convolution_4'); 

    reluLayer('Name','relu_4') 

       convolution2dLayer(1,15,'Name','convolution_5'); 

    reluLayer('Name','relu_5') 

       convolution2dLayer(1,15,'Name','convolution_6'); 

    reluLayer('Name','relu_6') 

 

    additionLayer(5,'Name','add') 

  

    fullyConnectedLayer(numClasses,'Name','fully_connected') 

    softmaxLayer('Name','softmax') 

    classificationLayer('Name','Output')]; 

 

Since the expected work is to detect diseases in the abdominal area via computer 

tomography (CT), a developed architecture is needed to produce better results and detection. In 

this context, the DiceNet model was examined and reviewed. The DiceNet model has an 

architecture including some layers that construct a linearly ordered architecture in which it 

contains DimConv 3x3 convolutional layers. Therefore, based on the DiceNet architecture, 

layer additions and enhancements have been made to the new model, FizNet. In addition, 

Convolutional layers, ReLU layers, Normalization layers, and Addition layers were inserted 

into the algorithm (See Figure 2). This insertion enhanced the algorithm's structure and helped 

yield an efficient result.  
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3. Results and Review 

After the construction of the FizNet model and its architecture was completed, the 

selected datasets were classified: 90% of the datasets are used for training and 10% for testing 

(See Table 5). The training and testing progress yield expected results with good accuracy and 

other criteria through our model, Graph 1. 

 

 
Graph 1. Training Progress 

 

Furthermore, for training and testing, the Confusion Matrix (CM) was used to know the 

performance of the model classification. It gives a comparison between Actual and Predicted 

values. The CM is a N x N matrix, where N is the number of classes or outputs. It indicates a 

certain matrix such as True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN) that are essential in calculating the accuracy and F1-score in our model using 

the following formulas [13]: 

 

Accuracy = (TP+TN)/(TP+TN+FP+FN).  

F1-score = (2TP)/(2TP+ FP+FN).  

 

In our model, each class in CM indicates the tags of the output diseases in a 6 x 6 matrix 

form, as shown in Graph 2 and 3. In the training progress, the class 1 x 1, for instance, shows 

that out of 540 images, the model has read and analyzed 523 correctly (TP) and missed only 17 

(FP), as shown in Graph 2. Moreover, the 4 x 4 and 5 x 5 classes give a 100% accurate result 

with 540 correct readings and analysis (TP). Correspondingly, the testing progress is 

demonstrated in the same manner as shown in Graph 3. 
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Graph 2. Training, True-Predicted Matrix 

 

 
Graph 3. Testing, True-Predicted Matrix 

 

The datasets provided to the model for training resulted in 98.64% accuracy, as shown 

in Table 1. The datasets which fed into testing the model provided two results. One, with an 

accuracy of 97%, is from trained datasets, and the other is from untrained datasets, with an 

accuracy of 83.61%. Since the model expectation is to function with untrained datasets for the 

test, the second result (83.61%) was considered, as shown in Table 2.  

Table 1. Training Results 

Total datasets 3240 

True 3196 

False 44 

F1 score 0.9864 

IoU 0.9734 

Accuracy 98.64 % 
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Table 2. Testing Results 

Total datasets 360 

True 301 

False 59 

F1 score 0.8348 

IoU 0.7261 

Accuracy 83.61 % 

 

As a result, the applied methods of the original model are compatible with the attained 

outcomes. Indeed, some enhancement can be done in the model without changing its structure 

for better accuracy in results than the one obtained. 

4. Datasets Used in The Experimental and Training Stages 

The dataset used in the testing and training stages was received from the Ministry of 

Health (TUSEB) via TEKNOFEST, from which the required permission was obtained. The 

1050 datasets in DICOM format have certain classifications, as given in the Data.xlsx file. The 

received folders contained the labeled datasets defined in the specification with an additional 

dataset for training, as presented in Table 3. 

 

Table 3. Disarranged Datasets 

The Label Name Given in Excel Class Slices Number 

Abdominal aorta anevrizma (Abdominal aorta) 6 1426 

Abdominal aorta diseksiyon (Abdominal aorta) 6 0 

Abdominal aorta - 77588 

Akut apandisit ile uyumlu ( Apandiks) 1 53388 

Akut divertikülit ile uyumlu (kolon) 5 1076 

Akut kolesistit ile uyumlu (Safra kesesi) 2 28683 

Akut pankreatit ile uyumlu (Pankreas) 3 25034 

Apandiks - 0 

Apendikolit Ek 0 

Böbrek taşı 4 15308 

Böbrek- mesane - 46206 

Kalsifiye divertikül Ek 572 

Kolon - 64413 

Pankreas - 12755 

Safra kesesi - 6878 

Safra kesesi taşı Ek 4093 

Üreter taşı 4 16711 
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Since the datasets are in DICOM format and have 79 GB of memory, compression was 

needed. So, the format of the images was converted to PNG for better image handling. Also, 

this has reduced the memory of the data to approximately 26 GB. The datasets were reclassified 

and reordered by keeping the labeled diseases as donated in the specification. This classification 

yields a clearer and more readable output for our program and helps us get fast and accurate 

results for our model, as shown in Table 4. 

 

Table 4. Arranged Datasets 

The Label Name Given in Excel Class Slices Number 

Akut apandisit ile uyumlu ( Apandiks) 1 53388 

Akut kolesistit ile uyumlu (Safra kesesi) 2 28683 

Akut pankreatit ile uyumlu (Pankreas) 3 25034 

Böbrek taşı 4 15308 

Üreter taşı 4 16711 

Akut divertikülit ile uyumlu (kolon) 5 1076 

Abdominal aorta anevrizma (Abdominal aorta) 6 1426 

Abdominal aorta diseksiyon (Abdominal aorta) 6 0 

Abdominal aorta 6 77588 

 

Among the datasets, a random sample of 3600 slices with their label name and class 

was chosen for training and testing (Table 5). 

 

Table 5. Training and Test Datasets 

The Label Name Given in Excel Class Slices Number 

Akut apandisit ile uyumlu ( Apandiks) 1 600 

Akut kolesistit ile uyumlu (Safra kesesi) 2 600 

Akut pankreatit ile uyumlu (Pankreas) 3 600 

Böbrek taşı 4 300 

Üreter taşı 4 300 

Akut divertikülit ile uyumlu (kolon) 5 600 

Abdominal aorta anevrizma (Abdominal aorta) 6 300 

Abdominal aorta diseksiyon (Abdominal aorta) 6 0 

Abdominal aorta 6 300 

Total                                                                                                                      3600 

Trained data = 90% = 3240 

Tested data = 10% = 360 
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